![]() |
![]() |
![]() |
![]() |
||
![]() |
|||||
![]() |
|||||
|
ULTRAVIOLET LIGHT SOURCES FOR by Sandy King
Most of the alternative processes are much less sensitive than modern silver gelatin papers and must be printed by contact. These processes require a light source that emits much of its radiation in the Ultraviolet A (320-400nm) range. Some processes also have considerable sensitivity to light in the violet and blue range up to about 450nm, but sensitivity falls off to near zero in the green at about 520nm. Most of the alternative processes are also highly sensitive to Ultraviolet B (280-320nm) but sources of this type should be used with care because UVB causes skin cancer and cataracts. It should also be noted that approximately 95% of Ultraviolet B is absorbed by the ordinary plate glass typically found in contact printing frames and vacuum easels so in practice most UVB radiation is lost to the processes unless one invests in the special glasses that allow this radiation to pass. There are many sources of UV light: the sun, sun lamps, self-ballasting mercury vapor lamps that screw into a normal incandescent light fixture, ballasted discharge lamps such as mercury vapor and metal halide, fluorescent tube banks, and plate-burners manufactured for the graphic arts. Any of these light sources may give good results with most of the alternative processes. The following information provides you with the general characteristics of each of these sources, hopefully helping you to select the best light for your circumstances. The Sun The sun is one of the strongest sources of ultraviolet light but it varies greatly in intensity according to season, time of day, atmospheric conditions, and geographic location. In some areas of the country the sun can be a very reliable light source. Its output is especially consistent on clear days between 10 a.m. and 2 p.m. but in many locations printing is not possible from late fall to early spring because of the shortness of the days and because the sun is so low in the sky. On the other hand in some locations the sun is available for 6-8 hours for 320 or more days of the year. It is possible to print in direct sun or in open shade. It should be noted that with most processes images of greater contrast will result from printing in the shade than with direct sun. Direct sun is of course much faster, by around 2-4 stops. Sun lamps Sun lamps are manufactured for tanning the human body. They produce quite a bit of heat and therefore must be placed at least 18-24” from the printing frame. At that distance exposures tend to be rather long in comparison with other units. Being something of a point source they give better results than diffuse light sources with reversed negatives. Sun lamps must be allowed to warm up for a couple of minutes to reach full output, and once the lamp has been turned off it must be allowed to cool before turning it on again. Sun lamps produce high levels of Ultraviolet B radiation and the operator should be shielded from the light as much as possible.
Self-ballasting mercury vapor lamps are bulbs that screw into an ordinary incandescent fixture. They are not widely available in sizes of over 175-watts and because of their limited power must be placed very close to the exposing plane, limiting their use to prints of no more than about 5X7” in size. Ballasted HID lamps (mercury vapor and metal halide) These lamps are commonly available in sizes from 175 watts up to 1000 watts. Such lights have a discontinuous spectrum but much of the radiation they produce is in the useful Ultraviolet A range. The ordinary 175-watt street lamps can be used to make prints up to 5X7” with the bulb at 12-15 inches from the printing frame, and prints up to 8X10” with the bulb at about two feet from the frame. This light must be allowed to warm up for at least five minutes prior to the printing session. The unit is slow and produces a lot of heat but it is one of the least expensive light sources available. Large discharge lamps of 1000 watts offer one of the most attractive options for alternative printing and will be described in more detail later in this article. Bank of fluorescent tubes
Plate-burners, or graphic arts printers The light source of plate-burners is usually a mercury vapor or metal halide discharge lamp, but some units may be equipped with carbon-arc or pulsed-xenon lamps. All of these sources take several minutes to reach maximum output and should be used with a light integrator, an instrument that measures the total amount of light available for exposure. Plate-burners, which usually come with integral vacuum frames and light integrators, make excellent UV printer for alternative printing. Unfortunately such units are very expensive if purchased new and are in fairly high demand by alternative printers.
Any of the light sources described above might prove to be ideal for a specific set of circumstances. However, when the decision is based on a variety of factors, including cost to acquire (or build), speed, ease of use, and the ability to cover evenly an area large enough to make prints up to 16X20” in size, the decision will probably come down to one of two choices: a bank of 8-12 BL, BLB or Super Actinic tubes, or a 1000 watt HID lamp. A. Bank of BL, BLB, Aqua or Super Actinic fluorescent tubes First, here is a little information on the nomenclature of fluorescent tubes. They are usually designated by a series of letters and numbers. For example, the GE Blacklight Blue tube carries the designation F20T12.BLB.
Ballast for fluorescent tubes is available in many configurations but a specific ballast unit must be rated for at least the total wattage of the tubes it is meant to power. There are two main types of ballast, magnetic and electronic. The latter has many advantages, not the least of which is the fact that they generate between 10% (T12 tubes) and 30% (T8 tubes) more lumens per watt, which can of course result in faster printing times.
The cost of a factory built UV printer capable of making prints up to 16X20” in size is quite high and many alternative printers opt to construct their own exposing units. Most any reasonably handy person can assemble a UV bank of fluorescent tubes with a few hours of work. Good plans are available in several books, including Luis Nadeau’s History and Practice of Platinum Printing, and The New Platinum Print by Carl Weese and Richard Sullivan. See also Issue No. 6 of Post-Factory Photography for some design considerations about building your own UIV bank. The major cost of such a project will be the tubes and ballast, which together should account for between 80-90% of the entire project. Although the total cost can vary greatly, depending on choice of tubes and ballast, one should be able buy all of the materials necessary for a 10-12 tube unit that will provide even coverage for prints up to 16X20” in size for around $250.
For construction plans using the individual Bipin holders follow the instructions on the Edwards engineering site. Construction of UV Fluorescent Bank Based on Two-Tube Holders This type of unit is much simpler to build as one basically just has to wire together the individual holders, attach them to some kind of support, and connect them to a power source. The disadvantage is that the holders add some unnecessary weight, and perhaps expense, to the construction project. The following instructions provide an outlined guide to building a UV printer with the two-tube holders. Step 1 — Decide what sized UV bank you need and buy the necessary parts. For a unit capable of printing up to 16X20 inches you will need a minimum of 5-6 two-tube holders and 10-12 tubes. Step; 2 — Assemble the holders side to side on a piece of plywood oversize plywood, 3/8” to 1/2” thick, leaving about 1 1/2” of free space on all sides. This piece of plywood will be the top of the UV box. Step 3 — Remove all of the knockout disks from the sides of the holders so that you can run wiring between them. Step 4 — The holders will have mounting holes at each end. With all of the holders arranged together on the plywood mark the location of these holes. Step 5 — Remove the holders and cut the plywood piece to size, making sure to leave free a space of about 1 1/2” on all sides. Also drill holes for 10-32 or 10-24 bolts at the mounting marks. Step 6 — Bolt all of the holders to the plywood top, countersinking the top of the bolts into the outside of the plywood to leave a flat surface. Step 7 — Wire the holders together and connect to a grounded power cord. To wire, first connect a green wire to all of the holders and run to a common point. Holders usually have designated points for this where you will find a green screw but the ground can just as well be established to any metal part of the holders, including the mounting nuts. Next, connect all of the black wires to a common point, and finally, do the same for all of the white wires. To complete the wiring, connect these three wires to wires of the corresponding color on the extension cord.
Step 9 — Slip the end caps onto the ends of the tube holders and secure the white metal reflector plates over the tube holders with the small locking butterfly that is provided. Proper installation of the reflector plates is essential for proper operation of the tubes. If the reflector plates are omitted or incorrectly installed the tubes may not turn on. Step 10 — Now cut the sides of the box, using any good quality 1X8 wood. You will need about 10 linear feet of wood for a unit based on 24” tubes. Cut a 4” diameter hole in the center of one of the end pieces, and in the other end drill about 6-8 holes of about 1 1/2” diameter. The large hole is for a fan, and the small holes are for effective airflow with the fan. The side of the box that is to face forward should be about 2” narrower than the back; this will allow you to slide the contact-printing frame under the tubes. Step 11 — Assemble the top of the unit to the sides using 1 1/4” wood screws, countersinking the screw heads. Then assemble the sides to each other, using 2” wood screws, countersinking here as well. Step 12 — Install tubes in the unit and connect to a power source. The tubes should come on immediately and all at the same time. If they do not come on at all the wiring was done incorrectly . If they come on but with hesitancy and with a few tubes off the problem is most likely with the grounding. Step 13 — Once the wiring has been checked remove the tubes and finish the unit by sanding and applying a coat of varnish or paint. Tubes Commonly Used in UV Printing As noted earlier, four types of fluorescent tubes are in common use in UV exposing units, BLB (Blacklight Blue), BL (Blacklight), AQUA and SA (Super Actinic). Some additional information about the characteristics of each type is given below. Also included is information about the Philips Actinic 05 light, which, though not widely available in the US, is also a good light for alternative printing.
Black Light Blue (BLB) — The BLB is filtered with a tube made
of dark violet. The color is rather dim to the eye but the filter is almost entirely transparent to UV light. BLB tubes emit very little radiation above the deep violet at 405nm, and virtually none
above 435nm as all longer wavelengths are highly blocked. BLB tubes have become something of Since the blue filter blocks some useful exposing light BLB tubes should in theory print slightly slower than BL tubes. My own testing with several different brands of tubes indicates that the actual difference in printing speed between BL and BLB tubes is very small. As a general rule, however, experience will show that BL tubes of the same manufacturer will print slightly faster and with just a tad more contrast than BLBs. Actinic — The Philips Actinic 05 tube emits radiation from 300nm to 460nm, with the peak at 365nm, close to ideal for many of the alternative processes. The printing characteristics of the Actinic tube are quite similar, both in speed and contrast, to the BL tube. This tube appears to be more widely available in Europe than in the US. In this country it is usually a special order item and the cost is relatively high in comparison to other tubes. Super Actinic — This tube, known as the Super Actinic 03, emits mostly violet and violet-blue light between 380nm to 480nm, peaking at around 420 nm. The Super Actinic tube is available in standard wattage, HO (high output), or VHO (very high output) versions, and in a wide range of sizes. The SA tube prints slower than the other two tubes, even in HO and VHO, with all of the processes I tested, but it gives the highest contrast. Many experienced printers who use the SA tube claim that it is faster than the BL for printing platinum. On the other hand I have received reports from equally experienced printers who have made direct comparisons of the printing speed of the BL and SA tubes and claim the opposite. The differences noted may result from the differences in sensitivity of light of different wavelength to the variations in humidity of dry, sensitized paper that occur across the country. The Super Actinic light is one of the most popular bulbs for aquarium applications and is widely available through dealers in aquarium materials. AQUA — This is another aquarium tube, made by Voltarc, very similar in spectral output and printing characteristics to the Super Actinic. Best Choice among Tubes
Based on printing speed the answer to the above question is more problematic. In looking through the archives of the alt-photo-process list and through other published materials one finds very little in the way of data derived from actual comparison testing and much of the information that is available is contradictory. Many variables affect exposure times: distance from the bulbs to the printing stage, temperature and age of the bulbs, wattage, type and power of ballast, peak wavelength output, to say nothing of the variables that are found in post-exposure processing. Assuming that one will be printing with several different processes, including gum, carbon, cyanotype, and Van Dyke, I would recommend either the BL or BLB tubes over the Super Actinic and AQUA. With all of these processes the regular power BL tubes gave the greatest printing speed in my tests, followed just behind by the BLB, while the HO and VHO Super Actinic were significantly slower. In terms of contrast, the Super Actinic gave the greatest contrast, the BL slightly less, and the BLB the least of the three tubes tested. However, if one will be printing exclusively with traditional kallitype, Pt/Pd, or Van Dyke the Super Actinic (or AQUA) may be a better choice. HID Lamps
My interest in assembling a HID light was sparked by an exchange of messages on one of the alternative printing lists about the printing characteristics of point source and diffuse printing lights in printing with the alternative processes. Based on my understanding of the various aspects of the issues involved I determined that a HID unit of 1000-watt power would likely print faster than my bank of BL tubes, an important consideration given the fact that many of my stained negatives required exposures of 30-60 minutes. Most importantly, however, the HID light, being semi -collimated, would allow printing from reversed negatives without loss of apparent sharpness, something not possible with diffuse light sources such as fluorescent banks. To set up a HID unit you will need what is known as a Luminaire, a complete lighting unit consisting of a lamp, ballast, and reflector. For a standard 1000-watt Luminaire the ballast will be ANSI specification M47 for metal halide lamps, H36 for mercury vapor lamps, with a Mogul E39 base for the lamp. The reflector for this unit will typically be 23” in diameter. The size lamp required for this application is designated BT56, which is 56-eights of an inch in diameter. Large electrical supply houses should have these units in stock, or you can order direct from Grainger. The unit I chose was a MHSS 1000-MT Lumark Fixture with a 23” round reflector (see Grainger Item No. 7v197 in the 2002 catalog for equivalent), complete with ballast, and a MH1000 w/v/5k Venture Lamp. I ordered both the Lumark fixture and lamp through a large electrical supply store in Greenville, SC. Total cost for the fixture with ballast and lamp from the local supplier was around $230.
The fixture was very easy to assemble and set up. The ballast supply voltage, which is known as a Quad Tap, has several wires coming out of the unit: one green for ground, a common (white), and four black wires, one each for 120 VAC, 208 VAC, 240 VAC and 277 VAC. Connect the green, white, and black wire of the correct voltage to the corresponding wires of an extension cord rated for the amperage for your outlet. WARNING: Don’t attempt this if you don’t know basic wiring. The top of the fixture has a 3/4” female pipe thread for attaching or hanging the fixture. You will need to suspend the unit about 20 inches from the print surface or build a box to set it on. The 20 inches is measured from the light pod in the bulb to the plane of the negative to be exposed. I hung the fixture from a 2X4 in my ceiling with a 5/16” X 4” eye screw. Total weight was about 30 lbs., and the reflector has a diameter of 23".
The light is very bright and intense but it is not dangerous . However, it should be shielded from the operator during use and you should not look directly at it. Once you screw in the bulb and turn on the power the lamp will need about 3-5 minutes of warm-up time to reach full brightness. And, after shut down you will have to wait a few minutes for the lamp to cool before restarting. However, don’t worry if you accidentally turn it back on without allowing it to cool and nothing happens. The lamp is still ok and will come back on in a few minutes when it has had a chance to cool. Unless you have a light integrator the best way to use the lamp is to leave it on for the duration of the printing session, planning the beginning and end of exposure with some kind of manual timer. The down side of this kind of use is waste of power and heat.
|
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
|
![]() |
![]() |
![]() |